Пожалуйста, подтвердите регистрацию по ссылке, которую мы отправили на:
[email protected]
Ответ на Номер №5.359, Часть 2 из ГДЗ по Математике 5 класс: Виленкин Н.Я.
ГДЗ (готовое домашние задание из решебника) по Математике 5 класса авторов Виленкин Н.Я. Жохов В.И. Чесноков А.С. 2013 / 2019 / 2023г. ФГОС на Номер №5.359, Часть 2.Условие 2023 г.
Условие 2019 г.
Условие 2013 г.
5.359. Выполните действие и сократите дробную часть полученного результата: а) 14/18 - 5/18; б) 5/22 + 6/22; в) 6 7/12 - 1 3/12; г) 7 5/27 + 3 4/27. При сложении смешанных чисел опираемся на правило, согласно которому, чтобы найти сумму двух смешанных чисел, необходимо отдельно сложить их целые и дробные части. Если дробная часть уменьшаемого больше или равна дробной части вычитаемого, то, чтобы найти разность двух смешанных чисел, необходимо из целой и дробной частей уменьшаемого вычесть соответственно целую и дробную части вычитаемого. Согласно основному свойству дроби, если числитель и знаменатель дроби умножить на одно и то же натуральное число, то получится равная ей дробь. Деление числителя и знаменателя на их общий делитель, отличный от единицы, называют сокращением дроби. а) 14/18-5/18=(14-5)/18=9/18=(9•1)/(9•2)=1/2 б) 5/22+6/22=(5+6)/22=11/22=(11•1)/(11•2)=1/2 в) 6 7/12-1 3/12=(6+7/12)-(1+3/12)=(6-1)+(7/12-3/12)= =5+(7-3)/12=5+4/12=5+(4•1)/(4•3)=5+1/3=5 1/3 г) 7 5/27+3 4/27=7+5/27+3+4/27=(7+3)+(5/27+4/27)= =10+(5+4)/27=10+9/27=10+(9•1)/(9•3)=10+1/3=10 1/3 *Цитирирование задания со ссылкой на учебник производится исключительно в учебных целях для лучшего понимания разбора решения задания.